A Current View of Scanning Electron Microscopy in Forensics

2022-05-21 16:49:43 By : Ms. Judy Ciler

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

Scanning electron microscopy (SEM) has been an important tool for forensic science since the 1970s, and it continues to find forensic applications today. The technique – capable of 100,000x magnification and higher – is widely employed to detect gunshot residue at crime scenes, while advances in SEM technology include environmental SEM (ESEM) and SEM with energy dispersive X-ray spectrometry (SEM-EDX) have enabled new inspection methods for advanced forensic science.

Image Credit: Couperfield/Shutterstock.com

SEM devices create images with high magnification and low resolution. By using a focused high-energy electron beam instead of light to magnify a sample, SEM breaks the diffraction limit of optical microscopy (set by the physical distance between waves of light, or light’s wavelength) and is used to study phenomena and matter at the nanoscale. Scanning electron microscopes (SEMs) can achieve magnification higher than 100,000x with a resolution below 1 nm.

An SEM uses an electron gun or cathode to emit a beam of electrons toward the sample. Electrons pass through the anode on their way out of the cathode and are focused into a strong beam. When this beam meets the sample, interactions between electrons and particles of matter in the sample material produce signals which are interpreted by computers to create a magnified image.

There are three main signals that occur when an SEM electron beam meets the sample. Secondary electrons, backscattered electrons, and X-rays are produced from interactions between electrons and the sample material, and each gives different information about the sample.

Image Credit: Couperfield/Shutterstock.com

Secondary electrons emanate from atoms on the surface of the sample material and recording them enables SEMs to output detailed, topographic imagery with high spatial resolution. Backscattered electrons are refracted incident electrons that have pierced below the sample surface and interacted with atoms inside the material. Atoms of more massive elements in the sample bounce incident electrons further away, and these scatter patterns can reveal information about the sample’s internal elemental makeup.

X-rays are formed when electrons in the electron beam replace electrons from atoms in the sample. When this happens energy must be released, and it is released in the form of X-rays. The wavelengths of X-rays produced in SEM are related to the elements that electrons have interacted with. Energy-dispersive spectrometry (EDX) is combined with SEM in SEM-EDX to record this information.

For SEM to work, samples need to either be conductive themselves or be coated with a conductive material such as gold-plated nanoparticles. Typically, SEM must also be carried out in a vacuum with dried sample material.

Since the 1970s, SEM has found numerous applications in forensic science. Forensic scientists use SEM to find forgeries, understand how textiles got damaged, and detect the presence of gunshot residue at crime scenes.

A major application for SEM in forensic science is the detection and analysis of gunshot residue. Gunshot residue or GSR is the name given to particulate matter that is emitted when metals in a gun are vaporized due to the immense heat and pressure applied to them. There are three main compounds used for gun cartridge primers, and therefore three main compounds that appear in gunshot residue: lead styphnate (Pb,) barium nitrate (Ba,) and antimony sulfide (Sb.)

Because the Pb, Ba, or Sb particles emitted by gunshots are so small, gunshot residue analysis only became possible with the advent of SEM in forensic science. Gunshot residue is often found on the clothing of somebody who has fired a gun, although finding gunshot residue is not enough on its own to identify a shooter. Finding gunshot residue can place people at crime scenes, although gunshot residue has been found as far as 13 m away from the gunshot.

SEM-EDX is applied in forensic science in order to help find and identify material that could be used as evidence. SEM-EDX is a useful tool because it allows forensic scientists to conduct multiple exploratory investigations on a sample simultaneously.

In SEM-EDX, a micrograph is first generated employing backscattered electrons. This provides morphological information about the sample’s surface at nanoscale resolution, as well as helps investigators identify gunshot residue particles of Pb, Ba, and Sb. The SEM process is typically automated in modern forensic science.

The SEM stores the location of gunshot residue on the sample, and then a trained analyst assesses each potential candidate for gunshot residue particles for positive identification. If the analyst is confident enough that gunshot residue has been detected, the particles’ EDX data is analyzed to exactly fingerprint their elemental composition.

ESEM is also increasingly used for forensic science. The technique enables SEM investigation to be carried out without the sample preparation requirements of conventional SEM, particularly the requirement to perform investigations in a vacuum. ESEM is better suited to investigating biological and other “wet” samples, and was recently used to identify phosphorus consumption as the cause of death in a “cold case.”

More from AZoM: Novel Applications of Polyvinyl Alcohol

AZO Materials (2010). Applications of Scanning Electron Microscopes in Forensic Investigations. Azom.com. [Online] Available at: https://www.azom.com/article.aspx?ArticleID=5528.

Taylor, M.E. (1973). Scanning Electron Microscopy in Forensic Science. Journal of the Forensic Science Society. Available at: https://www.sciencedirect.com/science/article/pii/S0015736873708252?via%3Dihub

Viel, G., G. Cecchetto, L.D. Fabbri, et al (2009). Forensic application of ESEM and XRF-EDS techniques to a fatal case of sodium phosphate enema intoxication. International Journal of Legal Medicine. Available at: https://link.springer.com/article/10.1007/s00414-009-0344-9

Zadora, G. and Z. Brożek-Mucha (2003). SEM–EDX—a useful tool for forensic examinations. Materials Chemistry and Physics. Available at: https://www.sciencedirect.com/science/article/pii/S025405840300018X?via%3Dihub

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Ben Pilkington is a freelance writer who is interested in society and technology. He enjoys learning how the latest scientific developments can affect us and imagining what will be possible in the future. Since completing graduate studies at Oxford University in 2016, Ben has reported on developments in computer software, the UK technology industry, digital rights and privacy, industrial automation, IoT, AI, additive manufacturing, sustainability, and clean technology.

Please use one of the following formats to cite this article in your essay, paper or report:

Pilkington, Ben. (2022, April 25). A Current View of Scanning Electron Microscopy in Forensics. AZoM. Retrieved on May 21, 2022 from https://www.azom.com/article.aspx?ArticleID=21613.

Pilkington, Ben. "A Current View of Scanning Electron Microscopy in Forensics". AZoM. 21 May 2022. <https://www.azom.com/article.aspx?ArticleID=21613>.

Pilkington, Ben. "A Current View of Scanning Electron Microscopy in Forensics". AZoM. https://www.azom.com/article.aspx?ArticleID=21613. (accessed May 21, 2022).

Pilkington, Ben. 2022. A Current View of Scanning Electron Microscopy in Forensics. AZoM, viewed 21 May 2022, https://www.azom.com/article.aspx?ArticleID=21613.

Do you have a review, update or anything you would like to add to this article?

AZoM speaks with Dr. Nicola Ferralis from MIT about his research that has developed a low-cost process of creating carbon fibers from hydrocarbon pitch. This research could lead to the large-scale use of carbon fiber composites in industries that have thus far been limited.

In this interview, AZoM speaks with Marco Enger, Senior Tribologist from GGB, to discuss how nano fillers affect transfer films within tribological systems.

Ahead of their talk on green chemistry and profitability in laboratory research at ChemUK 2022, AZoM spoke with Jacqueline Balian from Gambica and Martyn Fordman from Asynt about encouraging sustainability in the chemical industry.

COXEM's CP-8000+ is a powerful cross section polishing tool that uses an argon ion beam to allow precise, advanced sample preparation. Its state-of-the-art technology means the sample is not deformed and does not suffer any kind of physical damage.

This product profile outlines the background information of ARSST tool that is being used for screening tests and operating in "open cell" mode.

This product profile outlines the Evolution™ Pro UV-Vis Spectrophotometers from Thermo Fisher Scientific.

This article provides an end-of-life assessment of lithium-ion batteries, focusing on the recycling of an ever-growing amount of spent Li-Ion batteries in order to work toward a sustainable and circular approach to battery use and reuse.

Corrosion is the degradation of an alloy caused by its exposure to the environment. Corrosion deterioration of metallic alloys exposed to the atmosphere or other adverse conditions is prevented using a variety of techniques.

Due to the ever-increasing demand for energy, the demand for nuclear fuel has also increased, which has further created a significant increase in the requirement for post-irradiation examination (PIE) techniques.

AZoM.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022